

Comité Français de Mécanique des Sols et de Géotechnique

Jubilé du Professeur François SCHLOSSER

EFFETS DE LA CHALEUR SUR LE COMPORTEMENT DES ROCHES ARGILEUSES

Pierre Delage Ecole des ponts ParisTech Laboratoire Navier/CERMES

École des Ponts ParisTech

Thermal Impact on the Damaged Zone Around a Radioactive Waste Disposal in Clay Host Rocks

1

Remerciements

ANDRA, France *G. Armand, N. Conil, B. Gatmiri, J. Talandier* Euridice, Belgium *L.X. Li* Nagra, Switzerland *T. Vietor, S. Giger, B. Garitte* Projet européen TIMODAZ *F. Bernier, L.X. Li*

Ecole des Ponts Navier/CERMES

- Drs Y.J. Cui, J. Sulem, A.M. Tang
- Drs M. Mohajerani, M. Monfared, H. Menaceur
- Post doc M. Wan
- Thèses en cours de M. Belmokhtar et Ph. Braun

Argilite du Callovo-Oxfordien

ANDRA 2005

Stockage profond - 490m, concept français

Phase thermique transitoire, concept français

ANDRA 2005

Concept suisse (Nagra)

Phase thermique transitoire, concept suisse

Argilites et argiles

	COX	Opalinus	Boom
	arginne	clay	clay
Dry density (g/cm ³)	2.21-2.33	2.22-2.33	1.61-1.78
Calcite content (%)	23 - 42	6 - 22	0 - 3
Porosity (%)	11-16	11-14	35-40
Water content (%)	<6.5	4 - 8	20-30
Clay content (%)	50-65	45-55	40-70
Liquid limit (%)	21-25	21-25	55-80
Plasticity index (%)	11-19	13-17	32-51
Young's modulus	3.6-8.5	4-10	0.2-0.4
(GPa)			
UCS (MPa)	10-16	8-22	2-2.8
Permeability (m/s)	$.7-5 \times 10^{-13}$	$.5-5 \times 10^{-13}$	$2-5 \times 10^{-12}$
Geological stage	Callovo-	Aalenian	Rupelian
	Oxfordian		
(millions of years)	156-164	171-176	28.4-33.9

Gens 2011

Argilites et argiles

		COX	Opalinus	Boom
		argillite	clay	clay
	Dry density (g/cm ³)	2.21-2.33	2.22-2.33	1.61-1.78
	Calcite content (%)	23 - 42	6 - 22	0 - 3
	Porosity (%)	11-16	11-14	35-40
	Water content (%)	<6.5	4 - 8	20-30
Interstratifiés illite-smectite		50-65	15-55	40-7
	Liquid limit (%)	21-25	6 -25	55
	Plasticity index (%)	11-1 5	13-17	Ö
	Young's modulus	3. 200	4-10	P -0.4
	(GPa)	0		~
	UCS (MPa)	10-16	8-22	2-2.8
	Permeability (m/s)	$.7-5 \times 10^{-13}$	$.5-5 \times 10^{-13}$	$2-5 \times 10^{-12}$
	Geological stage	Callovo-	Aalenian	Rupelian
		Oxfordian		
	(millions of years)	156-164	171-176	28.4-33.9

Gens 2011

Argile de Boom, comportement volumique thermique

Argile de Boom, comportement volumique thermique

Argile de Boom, effet de la température sur la perméabilité

Argile de Boom, effet de la température sur la perméabilité intrinsèque

Argile de Boom, effet de la température sur la perméabilité intrinsèque

Argilite du Callovo Oxfordien

- Contexte géologique stable (155 My)
- ➢ Porosité: 14-19%
- ≻Fraction argileuse 48-50% à 490m
- Très faible perméabilité: 10⁻¹³ 10⁻¹⁴ m/s
- Faible deformabilité
- Bonne capacité de rétention des radionucléides

Mais Zone endommagée par l'excavation - EDZ

Laboratoire de recherche souterrain de l'Andra à Bure

Armand et al 2014

Laboratoire de recherche souterrain de l'Andra à Bure

Expérimentations thermiques in-situ (Mt Terri, Suisse)

Expérimentations thermiques in-situ (Mt Terri, Suisse)

Pressurisation thermique en labo

Chauffage non drainé sous contrainte in-situ avec mesure de pression interstitielle

Mohajerani, Delage, Sulem et al. IJRMMS (2012)

Coefficient de pressurisation thermique Λ , argilite du COx

Triaxial à cylindre creux TIMODAZ

Diamètre externe 100 mm Diamètre interne 60 mm Hauteur 70 mm Pression interne et externe égales Drainage en haut, bas et latéral

Longueur de drainage H = 10 mm (demie épaisseur du cylindre creux)

Monfared, Delage, Sulem et al. IJRMMS (2011)

Mesures locales de déformations

Monfared, Delage, Sulem et al. IJRMMS (2011)

Dispositif

Ecrouissage thermique de l'argile à Opalinus

Ecrouissage thermique du COx

Belmokhtar 2016

Ecrouissage thermique du COx

Belmokhtar 2016

Réactivation thermique d'un plan de cisaillement, COx

Critère de rupture (température), COx

Menaceur, Delage et al. RMRE (2016)

Essai de perméabilité radiale

Essai de perméabilité radiale

33

Essai de perméabilité radiale, après cisaillement

Variations de perméabilité, COx

Menaceur, Delage et al. RMRE (2016)

Variations de perméabilité, COx

Menaceur, Delage et al. RMRE (2016)

Conclusions

- Aspects sensibles THM dans le stockage dans les argiles et argilites
- Effet de la surconsolidation sur la réponse thermique volumique des argiles
- Essais en labo difficiles (très faible perméabilité)
 - Dispositifs spécifiques avec courts chemins de drainage saturation complète, bonnes conditions de drainage
- Pressurisation thermique
- Ecrouissage thermique
- Zone endommagée par l'excavation (EDZ)
 - Pas d'effets des fissures sur la perméabilité (25 et 80°C) Excellent auto-colmatage (25 et 80°C)
 - Mobilisation thermique de plans de cisaillement existants
- Meilleure compréhension des phénomènes THM dans le champ proche